

Logic and Set Theory | Mathematical Methods of Economics

Necessary and Sufficient conditions

P is a sufficient condition for Q means $P \Rightarrow Q$ (P implies Q)

Q is a sufficient condition for P means P=> Q (P implies Q)

P is a necessary and sufficient condition for Q means P<=>Q (P iff Q)

Mathematical Proof

Usually it is most natural to prove a result, say P=>Q by starting with the premises P and successively working forward to the conclusion Q, called a direct proof. Sometimes however it is more convenient to prove the implication P=> Q by an indirect proof. In this case, we begin by supposing Q is not true and on that basis

demonstrate that neither P can be true.

Then there is a third method of proof that is also useful called proof by contradiction. The method is based upon fundamental logical principle: that it is impossible for a chain of valid inferences to proceed from a true proposition to a false one. Therefore, if we have a proposition R and we can derive a contradiction on the basis of supposing that R is false, then it follows that R must be true.

Set Theory

Basics

 $A \cup B = \{x: x \in A \text{ or } x \in B\}$

 $A \cap B = \{x: x \in A \text{ and } x \in B\}$

 $A|B = \{\{x: x \in A \text{ or } x \notin B\}\}$

 $A \subseteq B = \{\{x : x \in A \Rightarrow x \in B\}\}$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

 $A \triangle B = (A|B) \cup (B|A)$

 $n(A \cup B) = n(A) + n(B) - n(A \cap B)$

If $A \cap B = \varphi$, then $n(A \cup B) = n(A) + n(B)$

 $n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B)$

 $-n(B\cap C) - n(A\cap C) + n(A\cap B\cap C)$

Commutative law

 $A \cap B = B \cap A$

AUB=BUA

Associative law

 $A \cap (B \cap C) = (A \cap B) \cap C$

AU(BUC)=(AUB)UC

Distributive law

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Idempotent law

 $A \cap A = A$

AU=A

Law of U and ϕ

 $A \cap \varphi = A$

 $AU\phi = A$

 $U \cap A = A$

U UA =U

Logic and Set Theory | Mathematical Methods of Economics

Necessary and Sufficient conditions

Compliments law

AUA'=U

 $A \cap A' = \varphi$

A'= U-A

De- Morgan's Law

 $(A \cup B)' = A' \cap B'$

 $(A \cap B)' = A' \cup B'$

Law of double compliments

(A')' = A

Compliments between U and ϕ

U'= φ

φ= U

$$n(A|B) = n (A \cup B) - n(B)$$
$$= n (A) - n(A \cap B)$$
$$n(A') = n(U) - n(A)$$

Power Set

It is a collection of all subsets of say, set A If A={p,q}, then $P(A)=\{\phi, \{p\}, \{q\}, \{p,q\}\}\}$ $n(P(A))=2^m$ where n(A)=m

Proper subset [⊂]

Set A is considered to be a proper subset if Set B contains at least one element that is not in A. If we have to pick n number of elements from a set containing N elements, it can be done in NCn ways which also becomes the number of possible subsets containing n number of elements from a set with cardinality N. If a set has n elements, the number of subsets of the given set is 2^n and number of proper subsets would be 2^{n-1}

Logic and Set Theory | Mathematical Methods of Economics

Venn Diagrams

