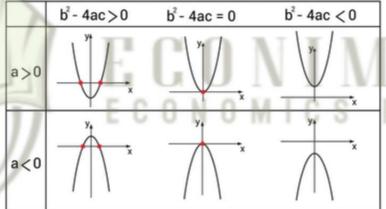
Types of functions | Mathematical Methods of Economics

Quadratic functions

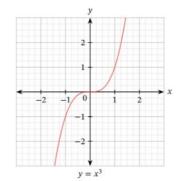
- $y=ax^2+bx+c$
- $x=[-b\pm\sqrt{(b^2-4ac)}]/2a$
- If b^2 -4ac =0, then the function has one zero i.e. x=-b/2a
- If b^2 -4ac >0, then 2 zeroes.
- If b^2 -4ac <0, then no zeroes.
- If a>0, f(x) attains min at -b/2a and min value is $c-b^2/4a$
- If a < 0, f(x) attains max at -b/2a and max value is $c-b^2/4a$

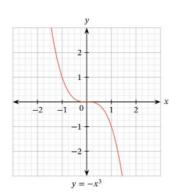
Quadratic Function $y = ax^2 + bx + c$



Cubic functions

• $f(x) = ax^3 + bx^2 + cx + d$





General polynomials

- $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ is called a general polynomial of degree n. Often one is interested in finding the number and location of the zeroes of P(x) i.e. where P(x) = 0
- $a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0$ is called the general nth order equation.

Types of functions | Mathematical Methods of Economics

• Note:- According to fundamental theorem of algebra, every polynomial of the general form can be written as a product of first or second degree.

Remainder Theorem

• Let P(x) and Q(x) be two polynomials for which the degree of P(x) is greater than or equal to the degree of Q(x). Then, there always exist unique polynomials q(x) and r(x) such that

$$P(x)=q(x) Q(x) + r(x)$$
(#)

where the degree of r(x) is less than degree of Q(x). This fact is called the remainder theorem.

• When x is such that $Q(x) \neq 0$, then (#) can be written as

$$P(x)/Q(x) = q(x) + r(x)/Q(x)$$

- If r(x) = 0, we say that Q(x) is a factor of P(x) or that P(x) is divisible by Q(x) i.e. P(x)/Q(x) = q(x) which is the quotient when $r(x) \neq 0$, is the remainder.
- An important special case is when Q(x)=x-a. Then Q(x) is of degree 1, so r(x) must have degree o and therefore is a constant. In that case,

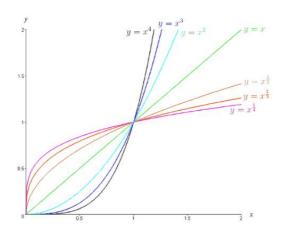
$$P(x) = q(x)(x-a) + r \quad \forall x$$

• For x=a in particular, we get P(a)=r. Hence, x-a divides P(x) iff P(a)=o

i.e.
$$P(x)$$
 has a factor x - $a <=> $P(a) = 0$$

Power Functions

•
$$f(x)=x^r$$



Property	Symbols
Product of Powers	$b^m \cdot b^n = b^{m+n}$
Power of a Power	$(b^m)^n = b^{m \cdot n}$
Power of a Product	$(ab)^m = a^m b^m$
Quotient of Powers	$\frac{b^m}{b^n} = b^{m-n}$
Power of a Outlier!	$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$
Zero Exponents	$b^0 = 1$
Negative Exponents	$b^{-m} = \frac{1}{b^m}$
Rational Exponents	$b^{\frac{p}{r}} = (\sqrt[r]{b})^p$