

Relations

Cartesian Product

A x B ={ (a, b): a \in A, b \in B A x B \neq B x A n(A x B) = mn if n(A)=m and n(B)=n

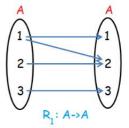
Relation

A relation from A to B is a subset of A x B i.e. $R \subseteq A \times B$ Number of relations from A to B is 2^{mn}

Universal relation

It is the largest relation i.e. A x B

Void relation


 $R = \varphi \subseteq A \times A$

Identity relation

Every element of A is related to itself

Reflexive relation

If $(a, a) \in \mathbb{R} \ \forall \ a \in A$, then every element of A is related to itself. (see fig) Number of reflexive relations = $2^{(n \wedge 2)-n}$

Symmetric relation

Relations where if $aRb \Rightarrow bRa$

eg: $P = \{(2,3), (3,2), (1,1)\}; P \text{ is symmetric}$

Note: Empty relation is a symmetric set always.

Transitive relation

Relations where if aRb and bRc then aRc

Equivalence relation

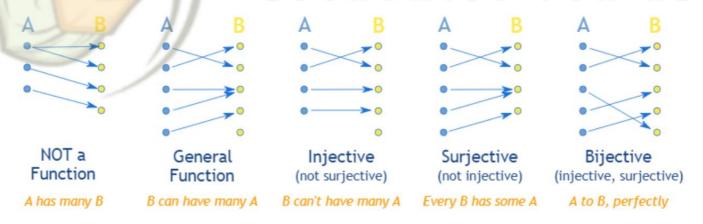
A relation that is reflexive, symmetric and transitive

Functions

A relation from A to B is a function if every element of A is related to a unique element in B.

Types of Functions

One-One functions (Injective)


Cases where different elements of A have different images in B

Onto function (Surjective)

Cases where if every element b€B has at least one pre-image a€A

Bijective function

Functions which are both one-one and onto

Functions of one real variable

A function of a real variable x with domain D is a rule that assigns a unique real number to each number x in D.

X Y

Range 3

8

16

27

2

1

4

64

9

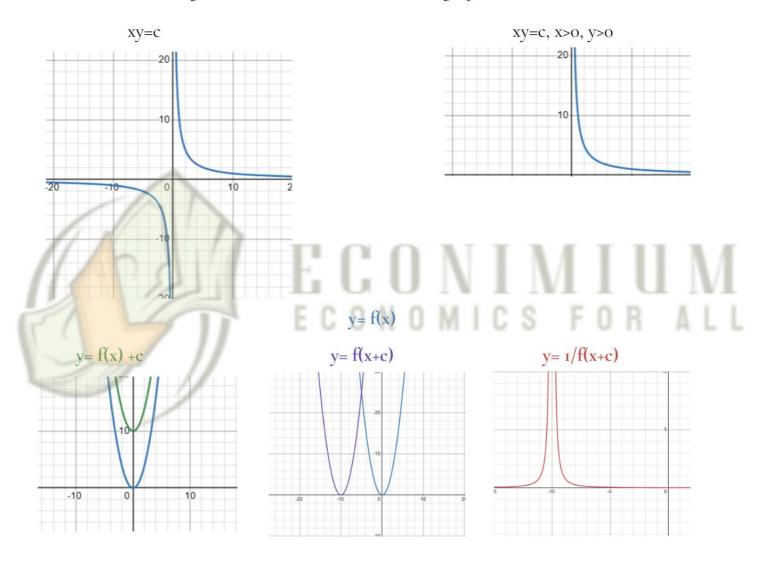
Co-domain

X = {1, 2, 3, 4}

f(x) = {(1, 1), (2, 8), (3, 27), (4,64)}

Domain and Range of some commonly used functions:

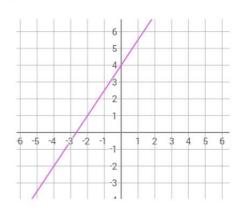
Function	Domain	Range
Polynomial function	R	R
Identity function x	R	R
Constant function K	R	{K}
Reciprocal function $\frac{1}{x}$	R₀	R ₀
x^2 , $ x $	R	R*∪{0}
$x^3, x x $	R	R
Signum function	R	{-1, 0, 1}
x+ x	CONPIMIC	R' ∪{0}
x- x	R	R⁻ ∪{0}
[x]	R	I
x - [x]	R	[0, 1)
\sqrt{x}	[0, ∞)	[0,∞]
a^x	R	R*
$\log x$	R'	R
sin x	R	[-1, 1]
cos x	R	[-1, 1]


If f is a function, we often denote y as the value of f at x as

$$y = f(x)$$
Independent/ exogenous
Dependent/ endogenous

Graphs- Basics

Here are some basic general forms of functions and its graphs:



 $f(x)=x^2$ and c=10 in these examples

Linear function

It is of the general form y=a+bx where a is the intercept and b being the slope.

The figure alongside showcases an increasing linear function with a=4 and $b\sim4/3$

